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Compulsory Part

1. It suffices to show that there are no ring homomorphism from C to R, then there would
be no ring homomorphism from a ring R that contains C to R as it would restrict to one
from C to R.

Let ϕ : C → R and ϕ(i) = a ∈ R, then 0 = ϕ(0) = ϕ(i2 + 1) = ϕ(i)2 + ϕ(1) = a2 + 1.
This implies that there is a real number whose square is −1, which is a contradiction.

2. See Tutorial 9 Q2.

3. Let a+N ∈ R/N , if it is nilpotent, then (a+N)k = ak +N = 0 +N for some k > 0.
This implies that ak ∈ N , i.e. ak is nilpotent, so there is some n so that ank = 0. So a is
in fact also nilpotent and a ∈ N , so that a+N = 0 +N .

4. Let ϕ : R → R′ be a homomrphism so that ϕ(I) ⊂ I ′. Define ϕ∗ : R/I → R′/I ′ by
ϕ∗(a+ I) = ϕ(a) + I ′. We will show that this is a well-defined ring homomorphism.

It is well-defined because if a, b ∈ R represents the same coset, i.e. a + I = b + I , then
a− b ∈ I , so that ϕ(a− b) ∈ ϕ(I) ⊂ I ′, in particular ϕ(a) and ϕ(b) represents the same
I ′-cosets, therefore ϕ∗(a+ I) = ϕ(a) + I ′ = ϕ(b) + I ′ = ϕ∗(b+ I).

ϕ∗ is a ring homomorphism because ϕ∗((a+I)+(b+I)) = ϕ∗(a+b+I) = ϕ(a+b)+I ′ =
(ϕ(a) + I ′) + (ϕ(b) + I ′) = ϕ∗(a+ I) + ϕ∗(b+ I). And similarly ϕ∗((a+ I)(b+ I)) =
ϕ∗(ab + I) = ϕ(ab) + I ′ = (ϕ(a) + I ′)(ϕ(b) + I ′) = ϕ∗(a + I)ϕ∗(b + I). Finally,
ϕ∗(1 + I) = ϕ(1) + I ′ = 1 + I ′ is the multiplicative identity element in R′/I ′.

5. Let I ⊂ J be ideals of R, to show that J/I is an ideal in R/I , first note that it is an
additive subgroup: if a, b ∈ J so that a + I, b + I are general elements in J/I , then
(a + I) − (b + I) = (a − b) + I ∈ J/I since a − b ∈ J as it is an ideal. Similarly, if
r + I ∈ R/I and a+ I ∈ J/I then (r + I)(a+ I) = ra+ I ∈ J/I because ra ∈ J .

To prove the isomorphism, we will construct a surjective homomorphism

ϕ : R/I → R/J,

such that kerϕ = J/I , then by first isomorphism theorem, we get the result.

Here ϕ is defined by ϕ(a + I) = a + J . It is well-defined because if a + I = b + I ,
then a − b ∈ I ⊂ J , so a + J = b + J as well. It is clearly a ring homomorphism as
ϕ((a+I)+(b+I)) = ϕ(a+b+I) = a+b+J = (a+J)+(b+J) = ϕ(a+I)+ϕ(b+I);
and ϕ((a+ I)(b+ I)) = ϕ(ab+ I) = ab+ J = (a+ J)(b+ J) = ϕ(a+ I)ϕ(b+ I). And
ϕ(1 + I) = 1 + J is the multiplicative identity.



The homomorphism is surjective because any a+ J ∈ R/J is the image of a+ I ∈ R/I .
And kerϕ = J/I because ϕ(a+ I) = a+ J = 0 + J if and only if a ∈ J , if and only if
a+ J ∈ J/I . This concludes the proof.

6. See the discussion in Tutorial 10 Q5. Z[i]/(a + bi) ∼= Z/(a2 + b2)Z holds when a, b are
coprime.

For Z[i]/(2 + 2i), it is a commutative ring with 8 elements, but it is not isomorphic to
Z8. Suppose there is an isomorphism ϕ : Z[i]/(2 + 2i) → Z8, let a ∈ Z8 be the image
of ī. Since i

2
= −1, whose image is −1 ∈ Z8. This implies that a2 ≡ −1 ≡ 7 in Z8.

However, we have 12 ≡ 32 ≡ 52 ≡ 72 ≡ 1 and 22 ≡ 62 ≡ 4 and 02 ≡ 42 ≡ 0. So such an
a does not exist.

Optional Part

1. Let {Ii}i∈J be an arbitrary collection of ideals in R, the I :=
⋂

i∈J Ii is an ideal because
arbitrary intersection of additive subgroup is an additive subgroup. And if a ∈ I and
r ∈ R, then ar, ra ∈ Ii for all i ∈ J since each Ii is an ideal, so ar, ra ∈ I as desired.

2. Suppose ϕ : Q → Zn is a ring homomorphism, then ϕ(n) = nϕ(1) = n1 = 0 ∈ Zn.
But ϕ(n)ϕ(1/n) = ϕ(n · 1/n) = ϕ(1) = 1 would imply that there exists a multiplicative
inverse of ϕ(n) = 0, this is clearly absurd.

3. First note that (a) = (b) is equivalent to a ∈ (b) and b ∈ (a). Therefore it is equivalent
to the existence of r, s ∈ R so that a = rb and b = sa. Now this implies that a = (rs)a.
By cancellation law (which is valid for integral domain D), we have rs = 1, so in fact
r, s ∈ D×.

Conversely, if a = ub for some unit u, then u−1a = b and we have both a ∈ (b) and
b ∈ (a), so the two ideals are equal.

4. If u ∈ R is a unit, then ru−1u = r ∈ (u) for arbitrary r ∈ R. So (u) = R and
R/(u) = R/R = 0 is the zero ring.

5. (a) A quotient ring has its additive structure given by quotient group, so the order can be
computed by considering quotient group. The underlying additive group of Z12 is
just the additive group of integers modulo 12, so |Z12| = 12, and (3) = {0, 3, 6, 9} is
an ideal (subgroup) of order 4, so the quotient group (hence ring) has order 12/4 = 3
by Lagrange’s theorem.

(b) 5 ∈ Z12 is a unit since 52 = 25 = 1 ∈ Z12, so by Q4 we know Z12/(5) is the zero
ring, it has 1 element.

(c) There are as many equivalence classes as there are degree 0, 1 and 2 polynomials
in Z2[x]. The reason is, any equivalence class is represented by some polynomial
p(x) ∈ Z2[x], and we may perform division algorithm and write p(x) = (x3 +
1)q(x) + r(x), where q, r ∈ Z2[x] with deg r(x) < deg(x3 + 1) = 3. Note that
(x3 + 1)q(x) is in the ideal (x3 + 1), so p(x) and r(x) represents the same class.
This means that any class is represented by a polynomial of degree 0, 1 or 2. And if
r1(x) and r2(x) are degree 0, 1 or 2 polynomials that represent the same class, then
r1−r2 ∈ (x3+1), the only possibility is that they are equal by degree consideration.



Thus the classes are represented by 0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1 and
there are 8 distinct classes.

6. (a) ϕ as defined is a ring homomorphism because complex conjugation is a ring homo-
morphism. Write c : Z[i] → Z[i] where c(z) = z, then we know that z + w = z+w
and zw = z · w and conjugate of 1 is itself. Therefore, one can realize ϕ as
the composition of the conjugation map c, followed by the canonical projection
π : Z[i] → Z[i]/(a− bi) by z 7→ z + (a− bi).

(b) This is clear because given any z+ (a− bi) ∈ Z[i]/(a− bi) we have z+ (a− bi) =
ϕ(z), so ϕ is surjective.

(c) Note that

c+ di ∈ kerϕ ⇐⇒ ϕ(c+ di) = c− di+ (a− bi) = 0 + (a− bi)

⇐⇒ c− di ∈ (a− bi)

⇐⇒ c− di = k(a− bi), k ∈ Z[i]

⇐⇒ c+ di = k(a+ bi), k ∈ Z[i]

⇐⇒ c+ di ∈ (a+ bi)

So kerϕ = (a+ bi).

(d) By the first isomorphism theorem, Z[i]/(a+bi) = Z[i]/ kerϕ ∼= im(ϕ) = Z[i]/(a−
bi).

7. (a) I is an additive subgroup since if f, g ∈ I , then (f+g)(0) = f(0)+g(0) = 0+0 = 0.
And if f ∈ I and h ∈ R, then (fh)(0) = f(0)h(0) = 0h(0) = 0, so I is an ideal.

(b) Define ϕ : R → R by ϕ(f) = f(0). Then ϕ is a ring homomorphism because
ϕ(f + g) = (f + g)(0) = f(0) + g(0) = ϕ(f) + ϕ(g) and ϕ(fg) = (fg)(0) =
f(0)g(0) = ϕ(f)ϕ(g), and ϕ(1) = 1 for the constant function.
This homomorphism is surjective since for any a ∈ R, regarded a as the constant
function with value a, we have ϕ(a) = a. And kerϕ = I by definition of I .
Therefore by first isomorphism theorem R/I ∼= R.

8. Let D be a PID and I an ideal of D, let J ⊂ D/I be an ideal of the quotient ring. Write
π : D → D/I the canonical projection map, then π−1(J) is an ideal of D, hence it is
principal. Denote (b) = π−1(J). Clearly, (b) = π−1(J) ⊃ π−1(0) = I , therefore by by
compulsory Q5, (b)/I is an ideal of D/I . We will show that (b)/I = J , therefore J is
generated by b+ I ∈ D/I .

Let c + I ∈ J , then π(c) = c + I , so that c ∈ π−1(J) = (b), therefore c + I ∈ (b)/I .
Conversely, if c + I ∈ (b)/I , then c − rb ∈ I for some r ∈ R, in particular, c ∈ (b) =
π−1(J), so c+ I = π(c) ∈ J .

This concludes the claim since (b)/I is a principal ideal since by definition (b)/I :=
{x+ I : x ∈ (b)}, so (b)/I = (b+ I) (the ideal generated by b+ I).


