THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Homework 8 Solutions
 4th April 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

Compulsory Part

1. It suffices to show that there are no ring homomorphism from \mathbb{C} to \mathbb{R}, then there would be no ring homomorphism from a ring R that contains \mathbb{C} to \mathbb{R} as it would restrict to one from \mathbb{C} to \mathbb{R}.

Let $\phi: \mathbb{C} \rightarrow \mathbb{R}$ and $\phi(i)=a \in \mathbb{R}$, then $0=\phi(0)=\phi\left(i^{2}+1\right)=\phi(i)^{2}+\phi(1)=a^{2}+1$. This implies that there is a real number whose square is -1 , which is a contradiction.
2. See Tutorial 9 Q2.
3. Let $a+N \in R / N$, if it is nilpotent, then $(a+N)^{k}=a^{k}+N=0+N$ for some $k>0$. This implies that $a^{k} \in N$, i.e. a^{k} is nilpotent, so there is some n so that $a^{n k}=0$. So a is in fact also nilpotent and $a \in N$, so that $a+N=0+N$.
4. Let $\phi: R \rightarrow R^{\prime}$ be a homomrphism so that $\phi(I) \subset I^{\prime}$. Define $\phi_{*}: R / I \rightarrow R^{\prime} / I^{\prime}$ by $\phi_{*}(a+I)=\phi(a)+I^{\prime}$. We will show that this is a well-defined ring homomorphism.

It is well-defined because if $a, b \in R$ represents the same coset, i.e. $a+I=b+I$, then $a-b \in I$, so that $\phi(a-b) \in \phi(I) \subset I^{\prime}$, in particular $\phi(a)$ and $\phi(b)$ represents the same I^{\prime}-cosets, therefore $\phi_{*}(a+I)=\phi(a)+I^{\prime}=\phi(b)+I^{\prime}=\phi_{*}(b+I)$.
ϕ_{*} is a ring homomorphism because $\phi_{*}((a+I)+(b+I))=\phi_{*}(a+b+I)=\phi(a+b)+I^{\prime}=$ $\left(\phi(a)+I^{\prime}\right)+\left(\phi(b)+I^{\prime}\right)=\phi_{*}(a+I)+\phi_{*}(b+I)$. And similarly $\phi_{*}((a+I)(b+I))=$ $\phi_{*}(a b+I)=\phi(a b)+I^{\prime}=\left(\phi(a)+I^{\prime}\right)\left(\phi(b)+I^{\prime}\right)=\phi_{*}(a+I) \phi_{*}(b+I)$. Finally, $\phi_{*}(1+I)=\phi(1)+I^{\prime}=1+I^{\prime}$ is the multiplicative identity element in R^{\prime} / I^{\prime}.
5. Let $I \subset J$ be ideals of R, to show that J / I is an ideal in R / I, first note that it is an additive subgroup: if $a, b \in J$ so that $a+I, b+I$ are general elements in J / I, then $(a+I)-(b+I)=(a-b)+I \in J / I$ since $a-b \in J$ as it is an ideal. Similarly, if $r+I \in R / I$ and $a+I \in J / I$ then $(r+I)(a+I)=r a+I \in J / I$ because $r a \in J$.
To prove the isomorphism, we will construct a surjective homomorphism

$$
\phi: R / I \rightarrow R / J
$$

such that $\operatorname{ker} \phi=J / I$, then by first isomorphism theorem, we get the result.
Here ϕ is defined by $\phi(a+I)=a+J$. It is well-defined because if $a+I=b+I$, then $a-b \in I \subset J$, so $a+J=b+J$ as well. It is clearly a ring homomorphism as $\phi((a+I)+(b+I))=\phi(a+b+I)=a+b+J=(a+J)+(b+J)=\phi(a+I)+\phi(b+I) ;$ and $\phi((a+I)(b+I))=\phi(a b+I)=a b+J=(a+J)(b+J)=\phi(a+I) \phi(b+I)$. And $\phi(1+I)=1+J$ is the multiplicative identity.

The homomorphism is surjective because any $a+J \in R / J$ is the image of $a+I \in R / I$. And $\operatorname{ker} \phi=J / I$ because $\phi(a+I)=a+J=0+J$ if and only if $a \in J$, if and only if $a+J \in J / I$. This concludes the proof.
6. See the discussion in Tutorial 10 Q5. $\mathbb{Z}[i] /(a+b i) \cong \mathbb{Z} /\left(a^{2}+b^{2}\right) \mathbb{Z}$ holds when a, b are coprime.
For $\mathbb{Z}[i] /(2+2 i)$, it is a commutative ring with 8 elements, but it is not isomorphic to \mathbb{Z}_{8}. Suppose there is an isomorphism $\phi: \mathbb{Z}[i] /(2+2 i) \rightarrow \mathbb{Z}_{8}$, let $a \in \mathbb{Z}_{8}$ be the image of \bar{i}. Since $\bar{i}^{2}=\overline{-1}$, whose image is $-1 \in \mathbb{Z}_{8}$. This implies that $a^{2} \equiv-1 \equiv 7$ in \mathbb{Z}_{8}. However, we have $1^{2} \equiv 3^{2} \equiv 5^{2} \equiv 7^{2} \equiv 1$ and $2^{2} \equiv 6^{2} \equiv 4$ and $0^{2} \equiv 4^{2} \equiv 0$. So such an a does not exist.

Optional Part

1. Let $\left\{I_{i}\right\}_{i \in J}$ be an arbitrary collection of ideals in R, the $I:=\bigcap_{i \in J} I_{i}$ is an ideal because arbitrary intersection of additive subgroup is an additive subgroup. And if $a \in I$ and $r \in R$, then $a r, r a \in I_{i}$ for all $i \in J$ since each I_{i} is an ideal, so $a r, r a \in I$ as desired.
2. Suppose $\phi: \mathbb{Q} \rightarrow \mathbb{Z}_{n}$ is a ring homomorphism, then $\phi(n)=n \phi(1)=n 1=0 \in \mathbb{Z}_{n}$. But $\phi(n) \phi(1 / n)=\phi(n \cdot 1 / n)=\phi(1)=1$ would imply that there exists a multiplicative inverse of $\phi(n)=0$, this is clearly absurd.
3. First note that $(a)=(b)$ is equivalent to $a \in(b)$ and $b \in(a)$. Therefore it is equivalent to the existence of $r, s \in R$ so that $a=r b$ and $b=s a$. Now this implies that $a=(r s) a$. By cancellation law (which is valid for integral domain D), we have $r s=1$, so in fact $r, s \in D^{\times}$.
Conversely, if $a=u b$ for some unit u, then $u^{-1} a=b$ and we have both $a \in(b)$ and $b \in(a)$, so the two ideals are equal.
4. If $u \in R$ is a unit, then $r u^{-1} u=r \in(u)$ for arbitrary $r \in R$. So $(u)=R$ and $R /(u)=R / R=0$ is the zero ring.
5. (a) A quotient ring has its additive structure given by quotient group, so the order can be computed by considering quotient group. The underlying additive group of \mathbb{Z}_{12} is just the additive group of integers modulo 12 , so $\left|\mathbb{Z}_{12}\right|=12$, and $(3)=\{0,3,6,9\}$ is an ideal (subgroup) of order 4 , so the quotient group (hence ring) has order 12/4 = 3 by Lagrange's theorem.
(b) $5 \in \mathbb{Z}_{12}$ is a unit since $5^{2}=25=1 \in \mathbb{Z}_{12}$, so by Q 4 we know $\mathbb{Z}_{12} /(5)$ is the zero ring, it has 1 element.
(c) There are as many equivalence classes as there are degree 0,1 and 2 polynomials in $\mathbb{Z}_{2}[x]$. The reason is, any equivalence class is represented by some polynomial $p(x) \in \mathbb{Z}_{2}[x]$, and we may perform division algorithm and write $p(x)=\left(x^{3}+\right.$ 1) $q(x)+r(x)$, where $q, r \in \mathbb{Z}_{2}[x]$ with $\operatorname{deg} r(x)<\operatorname{deg}\left(x^{3}+1\right)=3$. Note that $\left(x^{3}+1\right) q(x)$ is in the ideal $\left(x^{3}+1\right)$, so $p(x)$ and $r(x)$ represents the same class. This means that any class is represented by a polynomial of degree 0,1 or 2 . And if $r_{1}(x)$ and $r_{2}(x)$ are degree 0,1 or 2 polynomials that represent the same class, then $r_{1}-r_{2} \in\left(x^{3}+1\right)$, the only possibility is that they are equal by degree consideration.

Thus the classes are represented by $0,1, x, x+1, x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1$ and there are 8 distinct classes.
6. (a) ϕ as defined is a ring homomorphism because complex conjugation is a ring homomorphism. Write $c: \mathbb{Z}[i] \rightarrow \mathbb{Z}[i]$ where $c(z)=\bar{z}$, then we know that $\overline{z+w}=\bar{z}+\bar{w}$ and $\overline{z w}=\bar{z} \cdot \bar{w}$ and conjugate of 1 is itself. Therefore, one can realize ϕ as the composition of the conjugation map c, followed by the canonical projection $\pi: \mathbb{Z}[i] \rightarrow \mathbb{Z}[i] /(a-b i)$ by $z \mapsto z+(a-b i)$.
(b) This is clear because given any $z+(a-b i) \in \mathbb{Z}[i] /(a-b i)$ we have $z+(a-b i)=$ $\phi(\bar{z})$, so ϕ is surjective.
(c) Note that

$$
\begin{aligned}
c+d i \in \operatorname{ker} \phi & \Longleftrightarrow \phi(c+d i)=c-d i+(a-b i)=0+(a-b i) \\
& \Longleftrightarrow c-d i \in(a-b i) \\
& \Longleftrightarrow c-d i=k(a-b i), k \in \mathbb{Z}[i] \\
& \Longleftrightarrow c+d i=\bar{k}(a+b i), \bar{k} \in \mathbb{Z}[i] \\
& \Longleftrightarrow c+d i \in(a+b i)
\end{aligned}
$$

So ker $\phi=(a+b i)$.
(d) By the first isomorphism theorem, $\mathbb{Z}[i] /(a+b i)=\mathbb{Z}[i] / \operatorname{ker} \phi \cong \operatorname{im}(\phi)=\mathbb{Z}[i] /(a-$ bi).
7. (a) I is an additive subgroup since if $f, g \in I$, then $(f+g)(0)=f(0)+g(0)=0+0=0$. And if $f \in I$ and $h \in R$, then $(f h)(0)=f(0) h(0)=0 h(0)=0$, so I is an ideal.
(b) Define $\phi: R \rightarrow \mathbb{R}$ by $\phi(f)=f(0)$. Then ϕ is a ring homomorphism because $\phi(f+g)=(f+g)(0)=f(0)+g(0)=\phi(f)+\phi(g)$ and $\phi(f g)=(f g)(0)=$ $f(0) g(0)=\phi(f) \phi(g)$, and $\phi(1)=1$ for the constant function.
This homomorphism is surjective since for any $a \in \mathbb{R}$, regarded a as the constant function with value a, we have $\phi(a)=a$. And $\operatorname{ker} \phi=I$ by definition of I.
Therefore by first isomorphism theorem $R / I \cong \mathbb{R}$.
8. Let D be a PID and I an ideal of D, let $J \subset D / I$ be an ideal of the quotient ring. Write $\pi: D \rightarrow D / I$ the canonical projection map, then $\pi^{-1}(J)$ is an ideal of D, hence it is principal. Denote $(b)=\pi^{-1}(J)$. Clearly, $(b)=\pi^{-1}(J) \supset \pi^{-1}(0)=I$, therefore by by compulsory Q5, $(b) / I$ is an ideal of D / I. We will show that $(b) / I=J$, therefore J is generated by $b+I \in D / I$.
Let $c+I \in J$, then $\pi(c)=c+I$, so that $c \in \pi^{-1}(J)=(b)$, therefore $c+I \in(b) / I$. Conversely, if $c+I \in(b) / I$, then $c-r b \in I$ for some $r \in R$, in particular, $c \in(b)=$ $\pi^{-1}(J)$, so $c+I=\pi(c) \in J$.
This concludes the claim since $(b) / I$ is a principal ideal since by definition $(b) / I:=$ $\{x+I: x \in(b)\}$, so $(b) / I=(b+I)$ (the ideal generated by $b+I)$.

