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* If you have any questions, please contact Eddie Lam via echlam @math.cuhk.edu.hk or
in person during office hours.

Compulsory Part

1. It suffices to show that there are no ring homomorphism from C to R, then there would
be no ring homomorphism from a ring R that contains C to R as it would restrict to one
from C to R.

Let¢: C — Rand (i) =a € R, then 0 = ¢(0) = ¢(i2 + 1) = ¢(4)* + ¢(1) = a® + 1.
This implies that there is a real number whose square is —1, which is a contradiction.

2. See Tutorial 9 Q2.

3. Leta+ N € R/N, if itis nilpotent, then (a + N)¥ = a* + N = 0 + N for some k > 0.
This implies that a* € N, i.e. a” is nilpotent, so there is some n so that a™* = 0. So a is
in fact also nilpotent and @ € N, sothata + N =0+ N.

4. Let ¢ : R — R’ be a homomrphism so that ¢(I) C I'. Define ¢, : R/I — R'/I' by
¢«(a+ 1) = ¢(a) + I'. We will show that this is a well-defined ring homomorphism.

It is well-defined because if a,b € R represents the same coset, i.e. a + [ = b+ I, then
a—be I, sothat p(a —b) € ¢p(I) C I', in particular ¢(a) and ¢(b) represents the same
I'-cosets, therefore ¢, (a + 1) = ¢p(a) +1I' = ¢(b) + I' = ¢.(b+ I).

¢ 18 aring homomorphism because ¢, ((a+1)+(b+1)) = ¢.(a+b+1) = ¢p(a+b)+I' =
(pla) + 1)+ (p(b) + I') = ¢pu(a+ 1)+ ¢.(b+ I). And similarly ¢.((a + I)(b+ 1)) =
bulab+ 1) = dlab) + I' = (8(a) + I)(6(b) + I') = éua+ gu(b+ I). Finally,
¢.(1+1)=¢(1) +I' =1+ I' is the multiplicative identity element in R’/I’.

5. Let I C J be ideals of R, to show that J/I is an ideal in R/I, first note that it is an
additive subgroup: if a,b € J so that a + I,b + I are general elements in J/I, then
(a+1)—(b+1)=(a—b)+ 1€ J/Isincea—>b e Jasitis an ideal. Similarly, if
r+le€R/ITanda+1¢€ J/Ithen(r+1I)(a+1)=ra+ 1€ J/Ibecausera € J.

To prove the isomorphism, we will construct a surjective homomorphism
¢:R/I — R/J,

such that ker ¢ = J/I, then by first isomorphism theorem, we get the result.

Here ¢ is defined by ¢(a + ) = a + J. It is well-defined because if a + [ = b+ I,
thena—be I C J,soa+ J = b+ J as well. Itis clearly a ring homomorphism as
d((a+1)+(b+1)) =dla+b+1) =a+b+J = (a+J)+(b+J) = pla+1)+o(b+1);
and ¢((a+1)(b+1)) =¢(ab+1)=ab+J = (a+J)(b+J) =p(a+1)p(b+ ). And
o(1+I) =1+ J is the multiplicative identity.



The homomorphism is surjective because any a + J € R/.J is the image of a + 1 € R/I.
And ker ¢ = J/I because ¢(a + [) = a+ J = 0+ J if and only if a € J, if and only if
a+ J € J/I. This concludes the proof.

See the discussion in Tutorial 10 Q5. Z[i]/(a + bi) = Z/(a* + b*)Z holds when a, b are
coprime.

For Z[i|/(2 + 2i), it is a commutative ring with 8 elements, but it is not isomorphic to
Zs. Suppose there is an isomorphism ¢ : Z[i]/(2 + 2i) — Zs, let a € Zg be the image
of i. Since i = —1, whose image is —1 € Z. This implies that a> = —1 = 7 in Zs.
However, we have 12 =32 =52 =72 =1and 2> = 6® = 4 and 0> = 42 = 0. So such an
a does not exist.

Optional Part

1.

5.

Let {I;};cs be an arbitrary collection of ideals in R, the I := (,_; ; is an ideal because
arbitrary intersection of additive subgroup is an additive subgroup. And if a € [ and
r € R, then ar,ra € I; for all « € J since each [; is an ideal, so ar,ra € [ as desired.

. Suppose ¢ : Q — Z, is a ring homomorphism, then ¢(n) = n¢(l) = nl =0 € Z,.

But ¢(n)¢(1/n) = ¢(n-1/n) = ¢(1) = 1 would imply that there exists a multiplicative
inverse of ¢(n) = 0, this is clearly absurd.

. First note that (a) = (b) is equivalent to a € (b) and b € (a). Therefore it is equivalent

to the existence of 7, s € R so that a = rb and b = sa. Now this implies that a = (rs)a.
By cancellation law (which is valid for integral domain D), we have rs = 1, so in fact
r,s € D*.

Conversely, if a = ub for some unit u, then u~'a = b and we have both a € (b) and
b € (a), so the two ideals are equal.

If w € R is a unit, then ru~'u = r € (u) for arbitrary r € R. So (u) = R and
R/(u) = R/R = 0 is the zero ring.

(a) A quotient ring has its additive structure given by quotient group, so the order can be
computed by considering quotient group. The underlying additive group of Z;5 is
just the additive group of integers modulo 12, so [Z12| = 12, and (3) = {0, 3,6,9} is
an ideal (subgroup) of order 4, so the quotient group (hence ring) has order 12/4 = 3
by Lagrange’s theorem.

(b) 5 € Z5 is a unit since 5% = 25 = 1 € Z1,, so by Q4 we know Z5/(5) is the zero
ring, it has 1 element.

(c) There are as many equivalence classes as there are degree 0,1 and 2 polynomials
in Zs[z]. The reason is, any equivalence class is represented by some polynomial
p(z) € Z,|x], and we may perform division algorithm and write p(z) = (2 +
1)q(x) + r(z), where ¢, € Zs|z] with degr(z) < deg(z® + 1) = 3. Note that
(z3 + 1)g(x) is in the ideal (z3 + 1), so p(x) and r(z) represents the same class.
This means that any class is represented by a polynomial of degree 0, 1 or 2. And if
r1(z) and ro(x) are degree 0, 1 or 2 polynomials that represent the same class, then
ri—ry € (224 1), the only possibility is that they are equal by degree consideration.



Thus the classes are represented by 0,1, z, 2 + 1, 2% 2 + 1, 2% + z,2°> + 2 + 1 and
there are 8 distinct classes.

6. (a) ¢ as defined is a ring homomorphism because complex conjugation is a ring homo-
morphism. Write ¢ : Z[i] — Z[i] where ¢(z) = Z, then we know that z + w = Z4+w
and Zw = Z - w and conjugate of 1 is itself. Therefore, one can realize ¢ as
the composition of the conjugation map ¢, followed by the canonical projection
7 Z[i] = Z[i]/(a — bi) by z — z + (a — bi).

(b) This is clear because given any z + (a — bi) € Z[i|/(a — bi) we have z + (a — bi) =
®(Z), so ¢ is surjective.

(c) Note that

ct+di ekerp <= ¢(c+di)=c—di+ (a—bi) =0+ (a — bi)
< c—di € (a— bi)
< c—di=k(a—bi), k € Z[i]
<= c+di = k(a+bi), k € Z[i]
< c+di € (a+ bi)

So ker ¢ = (a + bi).

(d) By the first isomorphism theorem, Z[i]/(a+bi) = Z[i]/ ker ¢ = im(¢) = Z[i]/(a—
bi).

7. (a) Iisanadditive subgroup sinceif f, g € I, then (f+g¢)(0) = f(0)+¢(0) = 0+0 = 0.
Andif f € I and h € R, then (fh)(0) = f(0)h(0) = 0h(0) = 0, so I is an ideal.

(b) Define ¢ : R — R by ¢(f) = f(0). Then ¢ is a ring homomorphism because
o(f +9) = (f +9)(0) = f(0) + 9(0) = ¢(f) + ¢(g) and ¢(fg) = (f9)(0) =
f(0)g(0) = ¢(f)o(g), and ¢(1) = 1 for the constant function.

This homomorphism is surjective since for any a € R, regarded a as the constant
function with value a, we have ¢(a) = a. And ker ¢ = I by definition of /.

Therefore by first isomorphism theorem R/I = R.

8. Let D be a PID and [ an ideal of D, let J C D/I be an ideal of the quotient ring. Write
7 : D — D/I the canonical projection map, then 7=1(J) is an ideal of D, hence it is
principal. Denote (b) = 7 !(.J). Clearly, (b) = 7—'(J) D 7~1(0) = I, therefore by by
compulsory Q5, (b)/I is an ideal of D/I. We will show that (b)/I = J, therefore .J is
generated by b+ I € D/I.

Letc+ I € J, then7(c) = ¢+ I, sothat c € 7 !(J) = (b), therefore ¢ + I € (b)/I.
Conversely, if ¢+ I € (b)/I, then ¢ — rb € I for some r € R, in particular, ¢ € (b) =
7 i(J),soc+ I =mn(c) € J.

This concludes the claim since (b)/I is a principal ideal since by definition (b)/I :=
{x+1:2e(b)},so(b)/I=(b+ ) (theideal generated by b+ I).



